(W-3)(w-3)=2w^2-3w-1

Simple and best practice solution for (W-3)(w-3)=2w^2-3w-1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (W-3)(w-3)=2w^2-3w-1 equation:



(-3)(W-3)=2W^2-3W-1
We move all terms to the left:
(-3)(W-3)-(2W^2-3W-1)=0
We get rid of parentheses
-2W^2+(-3)(W-3)+3W+1=0
We multiply parentheses ..
-2W^2+(-3W+9)+3W+1=0
We add all the numbers together, and all the variables
-2W^2+3W+(-3W+9)+1=0
We get rid of parentheses
-2W^2+3W-3W+9+1=0
We add all the numbers together, and all the variables
-2W^2+10=0
a = -2; b = 0; c = +10;
Δ = b2-4ac
Δ = 02-4·(-2)·10
Δ = 80
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$W_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$W_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{80}=\sqrt{16*5}=\sqrt{16}*\sqrt{5}=4\sqrt{5}$
$W_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{5}}{2*-2}=\frac{0-4\sqrt{5}}{-4} =-\frac{4\sqrt{5}}{-4} =-\frac{\sqrt{5}}{-1} $
$W_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{5}}{2*-2}=\frac{0+4\sqrt{5}}{-4} =\frac{4\sqrt{5}}{-4} =\frac{\sqrt{5}}{-1} $

See similar equations:

| (2x)/3=11.5 | | 10s-4s-s+4s-4s=10 | | 4s-3s=11 | | (2x)/3=4.8 | | 3z-z=12 | | 3z-2=12 | | 3|5x-13|+7=-23 | | y=2-7/4+442/244+2342 | | 80=0.20n+55 | | -2(6x+1)+2x=-4-6x | | x4-18x-121=0 | | (4y-3)(5y-1)=0 | | X2+15x=-36 | | (6*e^2)+18=7 | | (1/2x—1)=(4/8x—4) | | 13y=170 | | −18=−12a | | 4.9t^2-24t+11=0 | | −18= −12a | | 16/21=x/18 | | -2x-6=3x+19 | | 16x=-2x+5 | | 10x−3=8+10x | | 2(x+2-6=10-3(x-1) | | (2x-3)/(3)+(4x)/(3)=7 | | n-3/4-11/6=21/3 | | 2x=16.9 | | x➗11.2=17 | | 12x–10=26 | | 4(3x+1=28 | | x+.75x=6 | | F(x)=-2x^2+8x-1 |

Equations solver categories